
Operating Systems 2016/17
Tutorial-Assignment 2

Prof. Dr. Frank Bellosa
Dipl.-Inform. Marc Rittinghaus

Question 2.1: Multi-Programming

a. Explain the difference between single-programming and multi-programming systems.
What is the advantage of multi-programming?

Solution:
Single-programming, also known as uni-programming, allows only one process to run at
a time. Multi-programming is a system feature enabling n > 1 processes to execute con-
currently, sharing the physical resources. The standard solution to make this possible is
preemption. Every process may run for a while. A timer interrupt (or any other interrupt in
tickless kernels) will then trap into the kernel which will run a routine to put the current-
ly running process to sleep, saving its processing state. Then the processor is given to
another process which may run in turn.

A benefit of multi-programming can be that the execution of different processes may be
interleaved on the CPU. Suppose the CPU phases (black lines) are as long as the I/O
phases, and suppose that we have to execute two different processes. The figure shows a
possible schedule if T1 only uses I/O device x (yellow line) whereas T2 always uses I/O
device y (green line), x 6= y:

In a single-programming system there would be no overlapping on the CPU. So, the CPU
would be idle up to 50 % of the time while accessing the I/O device.

Note that interrupts are required so that a device can notify the CPU once a request is
completed. Without interrupts, the CPU would have to poll the device, and thus would not
be able to do other work in the meantime.

Many issues arise when using multi-programming systems. Most importantly protection:
How do you separate activities cleanly (processes serve this purpose)? But also issues
such as fairness and accounting.

b. Explain the difference between CPU-bound and I/O-bound processes.

Solution:
A CPU-bound process is a process that rarely invokes I/O-operations. As a consequence,
CPU-bound processes are not very likely to block (i.e., they have to wait for an I/O opera-
tion to complete and thus cannot continue executing on the CPU). In contrast, I/O-bound
processes perform only short computations between I/O-jobs, thus, they are expected to
block relatively often.

1

c. Why is a good mixture of CPU-bound and I/O-bound processes preferable?

Solution:
A good mixture of I/O-bound and CPU-bound processes ensures that both the I/O-devices
and the CPU are utilized.

If the system executes an I/O-bound process, the probability that the process will soon
block and wait for I/O completion is high. This phase is ideal to run a CPU-bound process,
because now the I/O device is busy but the CPU idles. If we had only I/O-bound processes,
we would have much idle time for the CPU, because all processes would be waiting for
I/O, potentially even slowing each other down by stressing the I/O device. On the other
side, having only CPU bound processes leaves the I/O devices idle and puts all burden on
the CPU.

Question 2.2: Processes in Unix
a. What keeps a process from accessing the memory contents of another process?

Solution:

Every process lives in its own address space, which means that every process has it’s
own view on the memory it uses. Accessing an address (e.g., *(char*)0x1234) will (most
likely) lead to different results in different processes.

Address spaces are protection domains: Program code residing in one address space can-
not access data from another address space (unless the kernel supports sharing and both
sides agree to share some data).

The protection is implicit: If you can’t name it you can’t touch it.

The address translation is done by the hardware (e.g., MMU) and the OS. It will be covered
in great detail later in this lecture.

b. What are typical regions in a process address space? What is their purpose?

Solution:
From high addresses to low addresses:

OS The address range of the kernel is usually at the top end of the address space covering
the high addresses; e.g., the top 2 GiB in a 4 GiB (i.e., 32 bit) address space. This
region is shared across all address spaces and contains kernel code and data. It may
not be accessed by user mode code.

Stack The stack segment provides the temporary memory for program execution necessa-
ry to hold local variables, function call parameters and return addresses. It is one of
the most important address space ranges. The stack is usually located at high ad-
dresses and grows downwards as the function call depth increases. Depending on
the platform, the program binary may specify a start size for the stack.

Heap The heap provides space for dynamically allocated data. This area is usually mana-
ged by a heap allocator, which is implemented as a user space library. The heap allo-
cator first retrieves a huge memory chunk from the operating system and then divides
this chunk into smaller pieces as required by subsequent calls to malloc()/free(). A
call to malloc() is therefore usually very fast because it does not require contacting
the OS kernel. The heap is process private.

BSS The BSS segment (block started by symbol) is reserved for data that is uninitialized at
program start. The operating system usually initializes this range to zero. The program
binary only informs the loader about the starting address and size of the area, but

2

Reserved for OS

Stack

Heap

Data

Text

0xFFFFFFFF

0x00000000

AS

Read-Only Data

Data

BSS

it does not explicitly contain the ’zero’-data and thus does not take up space in the
program binary. This area is private to each process because it may be modified
during runtime.

Data The data segment holds pre-initialized data that can be modified during program
execution. Global variables that have a default value fall into this range. This area is
loaded from the program binary file but then remains private to the current process.

RO Data As the data segment, the read-only data segment contains pre-initialized data.
However, this data may not be modified during execution. An example are strings that
are passed to printf(). This area is loaded from the program binary and due to its
read-only nature can be shared across all processes that execute the same program.

Code/Text The text segment contains the program code of a process’s executable. The
instruction pointer of the CPU points to the current instruction in this section, when
the program executes in user mode. This area is loaded from the program binary file
and is usually shared across all processes that execute the same program.

c. What does the fork() system call do?

Solution:
fork creates a child process that is identical with the original process (i.e., the one that
invoked fork()) in most parts: Although both parent and child possess an own address
space, they have the same address space layout and data (as if the parent address space
would have been copied). They also share open files. There are, however, some exceptions:
The newly created process has its own, unique process id, and its parent id is set to the
id of the parent process.

For a more detailed overview of differences, you are encouraged to have a look at the
respective man page (i.e., man fork).

3

d. Write a small C program that creates a child process. Each process shall print out who
it is (i.e., parent or child). The parent shall also print out the child’s PID and then wait
for the termination of its child.

Solution:

#include <stdio.h>
#include <unistd.h>
#include <sys/wait.h>
#include <sys/types.h>

int main()
{

pid t pid;
switch((pid = fork()))
{
case −1:

printf (”Error. Fork failed\n”);
break;

case 0:
printf (”I am the child!\n”);
break;

default: // pid > 0
printf (”I am the parent!\n” \

”Child PID is %d\n”, pid);
wait(NULL);
printf (”Child terminated\n”);

}

return 0;
}

e. Assume you have to write a shell that can be used to launch arbitrary other programs.
Is the fork() system call sufficient for that purpose?

Solution:
fork() is insufficient, as it only creates a copy of the originating process. execve() can
be used to replace the currently running program with another, for example to load a new
binary into the current address space. When a shell creates a new process to execute
some program, it will first fork itself and then invoke execve() within the child process to
replace the shell code with the code of the program that shall be executed.

Question 2.3: Stacks and Procedures in C

a. Discuss the following code fragment. Try to visualize the stack contents before, during,
and after the execution of foo. All values are passed via the stack between calling and
called function. An int is 4 bytes and a double is 8 bytes long. Assume a 4-byte aligned,
downwards growing pre-decrement stack and the existence of a stack-frame pointer. All
local entities within a function are addressed relative to this frame pointer.

4

double foo (int ∗p)
{

int x;
double y;
x = ∗p;
// do something useful
return y;

}

double bar ()
{

double d;
int i = 42;
d = foo(&i);
return d;

}

Solution:
Different solutions are possible; we assume a call sequence that first pushes all argu-
ments onto the stack, then allocates some space for the return value, and finally calls the
function. In pseudo code (argument sizes assumed to be 4):

push argN # push arguments in reverse order
...
push arg1 # first argument is pushed last
add SP, -r # r: size of func’s return value, may be 0
call func # pushes return address (RA) on the stack
load reg, (SP) # retrieve return value into reg
add SP, r+4N # remove call frame: return value and arguments

The called function sets up its frame, accesses the arguments and stores its return value
as follows:

push FP # save old frame pointer
move FP, SP # FP := SP, set up own frame pointer
add SP, -n # n: size of all local variables
load reg, (FP)+8+r # first argument (skip old FP, RA, and return value)
...
store reg, (FP)+8 # store return value (skip old FP and return address)
move SP, FP # SP := FP, remove local variables
pop FP # restore old frame pointer
return # pops return address from stack

Figure 1 shows the stack at four distinct points in time. After having returned from the
called function, the caller must retrieve the return value (if any) and then clean up the stack
(remove the previously pushed arguments from the stack; in this example by subtracting
12 from SP).

Note 1: After the call, the frame of the caller is still accessible, but should not be accessed
directly!

Note 2: After returning, the frame of the callee is not cleared automatically, but only marked
as “free” (beyond current stack pointer)!

Conclusion: Using a stack for parameter passing has two main advantages:

(a) The context of each callee (its frame) is automatically pushed onto and popped from
the stack, no additional actions are needed.

(b) The parameters being pushed onto the stack are accessed via the stack frame pointer,
thus you can implement procedures with a variable number of parameters very easily.

5

Abbildung 1: Stack layout (a) before starting to call foo, (b) right after the call instruction
has been executed, (c) during the execution of foo, and (d) right after the return instruction
in foo has been executed. FP=frame pointer, SP=stack pointer

b. Characterize as briefly and precisely as possible the difference between a function and
a macro in C. Outline the consequences of these two different implementations with re-
gard to the caller.

Solution:
The code of a function exists only once, independent of how often the function is being cal-
led (exception: inlined functions). For macros, each call results in its respective code being
inserted at the call-site (i.e., macros are always inlined). In C, macros are expanded in the
source code by the pre-processor.

As a consequence, code with many macros usually results in larger code than the same co-
de using functions. Another effect is to be seen in the runtime behavior: function calls incur
a small overhead compared to macros for jumping to and back from the called function.

An important point to note is that macros are more susceptible to side-effects than func-
tions. While a function int max(int x, int y) { return ((x > y) ? x : y); } always
works as expected, the similar macro #define MAX(x,y) (((x) > (y)) ? (x) : (y)) does
not: int a=4, b=3; MAX(a++, b) surprisingly yields 5 and increases a to 6, whereas int

a=4, b=3; max(a++, b) produces the expected value of 4 and increases a only once so
that a == 5 holds afterwards. (Figure out how the macro is evaluated!)

Last but not least, macros are untyped: The compiler does not check whether the macro
arguments have a specific type. Where the above function forces the use of a int, the
macro can also deal with floats. This property is both a feature (great flexibility) and a
well-known source of errors.

6

